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ANALYSIS OF AN HP -NON-CONFORMING
DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD

FOR WAVE PROPAGATION∗

TAN BUI-THANH † AND OMAR GHATTAS †‡§

Abstract. We analyze the consistency, stability, and convergence of an hp discontinuous
Galerkin spectral element method. The analysis is carried out simultaneously for acoustic, elastic,
coupled elastic–acoustic, and electromagnetic wave propagation. Our analytical results are developed
for both conforming and non-conforming approximations on hexahedral meshes using either exact
integration with Legendre-Gauss quadrature or inexact integration with Legendre-Gauss-Lobatto
quadrature. A mortar-based non-conforming approximation is developed to treat both h and p
non-conforming meshes simultaneously. The mortar approach is constructed in such a way that
consistency, stability, and convergence analyses for non-conforming approximations follows the con-
forming counterparts with minimal modifications. In particular, sharp hp-convergence results are
proved for non-conforming approximations for time dependent wave propagation problems using
inexact quadrature.

Key words. discontinuous Galerkin method; spectral element method; linear hyperbolic equa-
tions; acoustic, elastic, and electromagnetic wave propagation; Riemann flux; non-conforming meshes;
Legendre-Gauss; Legendre-Gauss-Lobatto; consistency, stability, convergence.

AMS subject classifications. 65N35, 65N12, 65N15

1. Introduction. The discontinuous Galerkin (DG) method was originally de-
veloped by Reed and Hill [21] for the neutron transport equation, but has been ex-
tended to other problems governed by partial differential equations (PDEs) [9]. In
particular, it has emerged as a particularly attractive method for hyperbolic PDEs
[8, 10]. Among its many advantages over classical finite volume and finite element
methods, it has the ability to treat solutions with large gradients including shocks, it
provides the flexibility to deal with complex geometries, and it is highly parallelizable
due to its compact stencil. Perhaps its most important advantage, however, is its
ability to support hp adaptivity (where h refers to mesh size, and p to local poly-
nomial order) in a natural manner [5]. Together, these advantages make DG a very
desirable method for parallel solution of large-scale hyperbolic problems on adapted
meshes (e.g., [27]).

The question of how to treat non-conforming interfaces between elements due
to both local p-refinement and local h-refinement can be addressed in several ways.
The non-conforming approach of Kopriva [14, 18] replaces a non-conforming face by
mortars that connect pairs of contributing elements. The actual computations are
performed on the mortars instead of the non-conforming faces, and the results are
then projected onto the contributing element faces. Since the mortar approach main-
tains the compact stencil of the DG method, it makes adaptivity highly parallelizable
[27]. Moreover, discrete stability and optimal convergence rates have been numerically
observed in practice [18, 27]. Since then, there have been no attempts to theoretically
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2 T. Bui-Thanh and O. Ghattas

study the stability and convergence of Kopriva’s mortar-based non-conforming ap-
proximation in the context of discontinuous Galerkin spectral element methods. This
is the subject of the present article.

The celebrated Lax-Richtmyer equivalence theorem [20] has far reaching conse-
quences in numerical analysis, so much so that it is sometimes called the fundamental
theorem of numerical analysis. The theorem says that for well-posed linear differen-
tial problems, consistency and stability of a difference method imply its convergence.
However, typical applications of the Lax-Richtmyer theorem provide an upper bound
on error that grows exponentially in time. In practice, it is observed that the error
grows at a much lower rate. Rather than rely on the equivalence theorem, it has been
shown that a direct proof of convergence, with an error bound that grows at most
linearly in time, is possible for a class of discontinuous Galerkin methods [12, 13].

In this paper, we study theoretically the consistency, stability, and convergence
of a discontinuous Galerkin spectral element method (DGSEM) using such a direct
proof. In particular, we present a stability proof using an energy method for the
DGSEM with the mortar-based non-conforming approximation of Kopriva [14, 18].
We expect that the results of our study can be applied to a large class of linear
conservation laws. However, for concreteness, the proof is simultaneously carried out
for elastic, acoustic, coupled elastic–acoustic, and electromagnetic wave equations, as
exemplary conservation laws governed by linear hyperbolic PDEs. Instead of using
an exact numerical quadrature for the mortars as in [18, 27], for which we are not
able to prove stability in the interesting case of Legendre-Gauss-Lobatto quadrature,
we propose to employ a particular kind of quadrature rule that not only facilitates
the stability proof, but is also cheaper.

We are able to prove stability and convergence for both exact numerical quadra-
ture using the Legendre-Gauss rule and inexact numerical quadrature using the Legendre-
Gauss-Lobatto rule. For the inexact numerical integration, we use the tensor product
quadrature rule, since it allows us to perform discrete integration by parts [24, 17],
which in turns paves the way for the stability and convergence proofs.

The Riemann numerical flux is our main ingredient in proving stability and con-
vergence. Since the PDEs in this paper are linear, the exact Riemann flux can be
derived [25], and therefore we use it in our proofs. As will be shown, it is the dis-
sipative nature of the Riemann flux that makes the DGSEM stable. Therefore, we
speculate that our results also hold for other dissipative fluxes such as the stabilized
Lax-Friedrichs numerical flux [22].

We mostly restrict ourselves to the case of affine hexahedral meshes, for which
details of the derivations and proofs are presented. In order to make the proofs
concrete, three-dimensional coupled elastic–acoustic and electromagnetic waves are
used as examples. Of course, all of the results hold for two-dimensional problems as
well.

This article is organized as follows. Section §2 briefly describes a weak setting for
general linear conservation laws. Section §3 presents an hp DGSEM for both elastic–
acoustic and electromagnetic waves. We then prove stability for conforming meshes
in §4. The detailed description of our mortar-based non-conforming approximation is
given in §5, which is followed by the non-conforming stability proof in §6. The direct
proof of convergence is carried out in §7, and Section §8 offers conclusions.

2. General setting for linear hyperbolic conservation laws. We are in-
terested in linear wave equations governed by linear hyperbolic conservation laws. In
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the strong form, a general equation is given as

Q∂q
∂t

+∇x · (Fq) = g, q ∈ V,x ∈ D,

with V as the solution space, to be specified later, over the domain of interest D,
and with appropriate initial and boundary conditions. The subscript x denotes the
x-coordinate system in which the divergence operator acts. Next, multiplying by the
test function p, the corresponding weak formulation is obtained as∫

D
Q∂q
∂t
· p dx+

∫
D
∇x · (Fq) · p dx =

∫
D
g · p dx,

where “·” denotes the Euclidean inner product.
We next partition the domain D into Nel non-overlapping hexahedral elements

such that D =
⋃Nel

e=1 D
e, and integrate the weak formulation by parts twice to obtain∑

e

∫
De
Qe ∂q

e

∂t
· pe dx+

∫
De
∇x · (Fqe) · pe dx

+

∫
∂De

n ·
[
(Fqe)

∗ − Fqe
]
· pe dx =

∑
e

∫
De

ge · pe dx, (2.1)

where a consistent numerical flux (Fqe)
∗

has been introduced to couple solutions
of neighboring elements, and (·)e denotes the restriction on the e-th element of the
corresponding quantity.

Equation (2.1) is known as the strong form in the context of nodal discontinuous
Galerkin methods [13]. For the DGSEM described in this paper, the strong form
(integrating the flux terms by parts twice) and the weak form (integrating the flux
terms by parts once) are equivalent [24, 17], and hence all the results in the paper
hold for the weak form as well.

3. A discontinuous Galerkin spectral element method. In this section, we
briefly describe an hp-discontinuous Galerkin spectral element method. We approxi-
mate each element De by polynomials, again denoted by De, such that each element
De is mapped to the reference hexahedron D̂ = [−1, 1]3 by a C1-diffeomorphism Xe,

and D ≈ DNel =
⋃Nel
e=1 D

e. Equation (2.1) can be written in terms of D̂ as∑
e

∫
D̂

JeQe ∂q
e

∂t
· pe dr +

∫
D̂

∇r ·
(
F̃qe
)
· pe dr

+

∫
∂D̂

ñ ·
[(

F̃qe
)∗
− F̃qe

]
· pe dr =

∑
e

∫
D̂

Jege · pe dr, (3.1)

where r = (r1, r2, r3) ∈ D̂ represents the reference coordinates and Je is the Jacobian
of the transformation. The outward normal on the boundary of the master element
D̂ is denoted by ñ, and the contravariant flux [15] is defined as

F̃i = Jeai · F, i = 1, 2, 3,

with ai as the contravariant basis vectors.
We now describe the approximation spaces for wave propagation in elastic, acous-

tic, and coupled elastic–acoustic media using the strain–velocity formulation, and for
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Maxwell’s equations for electromagnetic wave propagation. Equation (3.1) can be
specialized to the elastic–acoustic wave propagation case by the following definitions,

q =

(
E
v

)
∈ V, Q =

(
I 0
0 ρI

)
, g =

(
0
f

)
∈ V,

with I denoting the fourth-order identity tensor, 0 the zero tensors of appropriate
sizes, I the second-order identity tensor, E the strain tensor, v the velocity vector, f
the external volumetric forces, and ρ the density.

The action of the flux operator F on the strain–velocity unknowns q can be shown
to be [27]

(Fq)i =

(
− 1

2 (v ⊗ ei + ei ⊗ v)
− (CE) ei

)
∈ V, for i = 1, 2, 3.

For isotropic linear elasticity, the strain tensor E and the Cauchy stress tensor S are
related by the fourth-order constitutive tensor C,

S = CE = λ tr(E)I + 2µE,

where λ and µ are the two Lamé constants characterizing the isotropic constitutive
relationship. The longitudinal wave speed cp and shear wave speed cs are defined in
terms of the Lamé constants and density by

cp =

√
λ+ 2µ

ρ
and cs =

√
µ

ρ
,

with cs = 0 in acoustic regions by virtue of µ = 0.
As in [27], we choose the solution space to be V = V 3×3

sym ⊕ V
3, where V denotes

a space of sufficiently smooth functions defined on D so that (2.1) makes sense. The
discontinuous approximation to V is given by

V d := {qd ∈ L2(DNel) : qd|De ◦X
e ∈ QNe(D̂)},

where QNe is the tensor product of one-dimensional polynomials of degree at most Ne
on the reference element. It should be pointed out that the polynomial orders need
not be the same for all directions. Nevertheless, we use the same order for clarity of
the exposition. The numerical solution qd ∈ V 3×3

d,sym ⊕ V
3
d restricted on each element

De is specified as

qd|De ◦X
e ∈ Ved ≡ Q3×3

Ne,sym
⊕Q3

Ne , Xe : D̂→ De.

Before introducing the Riemann flux, let us recall the following standard DG notation
for quantities associated with element interfaces:

[[q]] = q+ · n+ + q− · n−, [q] = q− − q+, {{Z}} =
Z+ + Z−

2
,

where the positive and negative signs indicate element interior and exterior, respec-
tively.

For linear conservation laws one can solve the Riemann problem exactly by various
methods [25]. Using the Rankine–Hugoniot approach, Wilcox et al. [27] show that
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the exact Riemann flux for the strain equation is given by

n ·
[
(Fq)

∗
E − (Fq)E

]
=
(
k0n · [[CE]] + k0ρ

+c+p [[v]]
)
n⊗ n

− k1 sym (n⊗ (n× (n× [[CE]]))

− k1ρ+c+s sym (n⊗ (n× (n× [v])) ,

and for the velocity equation by

n ·
[
(Fq)

∗
v − (Fq)v

]
=
(
k0n · [[CE]] + k0ρ

+c+p [[v]]
)
ρ−c−p n

− k1ρ−c−s n× (n× [[CE]])

− k1ρ+c+s ρ−c−s n× (n× [v]),

with k0 =
(
ρ−c−p + ρ+c+p

)−1
, k1 = (ρ−c−s + ρ+c+s )

−1
if µ− 6= 0, and k1 = 0 if µ− = 0.

Here, we will consider only traction boundary conditions Sn = tbc, where tbc is
the prescribed traction. The traction condition is enforced by the following mirror
principle,

[[v]] = [v] = 0, and [[S]] = −2
(
tbc − S−n

)
,

which applies to both elastic and acoustic media.
We next specialize (3.1) to the case of Maxwell’s equations. In this case,

q =

(
E
H

)
∈ V, Q =

(
εI 0
0 µI

)
, g =

(
0
0

)
∈ V,

where E denotes the electric field, H the magnetic field, µ the permeability, and ε
the permittivity.

The action of the flux operator F on the electromagnetic field q is defined by

(Fq)i =

(
−ei ×H
ei ×E

)
∈ V, for i = 1, 2, 3,

where V = V 3 and qd|De ◦X
e ∈ Ved ≡ Q3

Ne
. The exact Riemann numerical flux for

electric equation can be shown to be [13]

n ·
[
(Fq)

∗
E − (Fq)E

]
=

1

2 {{Z}}
n×

(
Z+ [H]− n× [E]

)
,

and for the magnetic equation,

n ·
[
(Fq)

∗
H − (Fq)H

]
=− 1

2 {{Y }}
n×

(
Y + [E] + n× [H]

)
,

where

Z± =
1

Y ±
=

√
µ±

ε±
.

Similar to the elastic–acoustic coupling case, we use the mirror principle to enforce
a perfect electric conductor (PEC) boundary condition by

Z− = Z+, Y − = Y +, n× [H] = 0, n× [E] = 2n×E−,
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and a perfect magnetic conductor (PMC) boundary condition by

Z− = Z+, Y − = Y +, n× [E] = 0, n× [H] = 2n×H−.

For dielectric boundary conditions we use

n×E− = n×E+, n×H− = n×H+.

In order to unify the treatment for elastic, acoustic, coupled elastic–acoustic, and
electromagnetic waves, we define a generic polynomial space PN whose meaning will
be clear in each context. For example, if we write qe ∈ PN , this identifies PN ≡ Ved .

The tensor product basis for QN is built upon the following one-dimensional
Lagrange basis

`l(ξ) =
∏

k=0,1,...,N
k 6=l

ξ − ξk
ξl − ξk

,

where theNth-degree Legendre-Gauss-Lobatto (LGL) points, orNth-degree Legendre-
Gauss points (LG), {ξl} on [−1, 1] for l = 0, . . . , N , are chosen as both the interpo-
lation and quadrature points. This is also known as the collocation approach. The
Lagrange interpolant of a function f(r) on the reference element D̂ is defined through
the interpolation operator IN as

IN (f) =
N∑

l,m,n=0

flmn`l(r1)`m(r2)`n(r3), flmn = f (ξlmn) , ξlmn =
(
ξl, ξm, ξn

)
∈ D̂.

A typical collocation approach [16] in semi-discretizing (3.1) is as follows. Find
q ∈ Vd such that∑

e

∫
D̂,Ne

INe
(
INe (Je) INe (Qe) ∂q

e

∂t

)
· pe dr +

∫
D̂,Ne

∇r · INe
(
F̃qe
)
· pe dr

+

∫
∂D̂,Ne

ñ ·
[
INe

((
F̃qe
)∗)
− INe

(
F̃qe
)]
· pe dr

=
∑
e

∫
D̂,Ne

INe (INe (Je) INe (ge)) · pe dr, ∀p ∈ Vd, (3.2)

where INe
(
F̃i
)

= INe
(
INe

(
Jeai

)
· INe (F)

)
. The direct consequence of the above

collocation is that the integrand in each integral is at most of order 2Ne in each
direction ri, i = 1, 2, 3. The subscript Ne in the integrals means that the integrals are
numerically evaluated using the corresponding Neth-degree LGL (or LG) quadrature
rule.

4. Semi-discrete stability for conforming meshes. In this section, we pro-
vide a stability proof for the both elastic–acoustic and electromagnetic cases on con-
forming meshes. By conforming meshes we mean that the intersection of two elements
is either an entire face, and entire edge, or a corner, and that the solution order is the
same for all elements. It is sufficient to prove semi-discrete stability since, by a result
in [19] (and the references therein), if the semi-discrete equation is stable, the fully
discrete system with the time derivative discretized by a locally stable Runge-Kutta
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(for example the classical 4th-order Runge-Kutta method) is stable as well, as long
as the time step is sufficiently small.

Here, we employ the energy approach to prove stability. For the elastic–acoustic
case, the semi-discrete energy functional Ed(t) is defined as

Ed(t) :=

Nel∑
e=1

EeNe(t) where EeNe(t) :=
1

2

∫
De,Ne

(E : (CE) + ρv · v) dx,

and for the electromagnetic case as

Ed(t) :=

Nel∑
e=1

EeNe(t) where EeNe(t) :=
1

2

∫
De,Ne

(εE ·E + µH ·H) dx.

For convenience, we define the element-wise discrete L2 inner product and the
induced norm on a generic domain D, which could be an element or its boundary, as

(q, p)D,N =

∫
D,N

q · p dx, ‖q‖2D,N =

∫
D,N

q · q dx,

and their continuous counterparts as

(q, p)D =

∫
D

q · p dx, ‖q‖2D =

∫
D

q · p dx.

The discrete global L2 norm is computed as the summation of the element-wise con-
tributions

‖q‖2DNel ,d =
∑
e

‖q‖2De,Ne .

theorem 1 (Stability for conforming meshes). Assume the mesh is affine and
conforming with solution order N , then the DGSEM discretization is stable in the
following sense:

d

dt
Ed ≤

1

2

(
Ed + ‖INg‖2DNel ,d

)
.

Moreover, if g = 0, then d
dtEd ≤ 0.

Proof. Substituting p :=

(
S
v

)
:=

(
CE
v

)
for the elastic–acoustic coupling case,

and p = q for the electromagnetic case, into (3.2), and using a discrete integration by
parts formula [24, 17], we obtain∑

e

d

dt
Eed =

1

2

∑
e

∫
D̂,N

[
IN
(
F̃qe
)
· ∇r · pe −∇r · IN

(
F̃qe
)
· pe
]
dr

−
∫
∂D̂,N

ñ ·
[(

F̃qe
)∗
− 1

2
F̃qe
]
· pe dr +

∫
D̂,N

Jege · pe dr, (4.1)

where we have dropped the interpolation operator INe in the last two terms on the
right side of (4.1) since the interpolation is an orthogonal projection with the discrete
L2 inner product [7], e.g., ∫

D,N

qp dx =

∫
D,N

IN (q) p dx. (4.2)
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For affine meshes, the metric terms Jeai, i = 1, 2, 3 are constant, and thus

IN
(
F̃i
)

= Jeai · IN (F) .

After some simple manipulations, for either the elastic-acoustic case or the electro-
magnetic case, one has∫

D̂,N

(
IN
(
F̃qe
)
· ∇rp

e −∇r · IN
(
F̃qe
)
· pe
)
dr = 0.

As a result, the volume terms vanish and the preceding equation can be expressed in
the integrals over physical space as

∑
e

d

dt
Eed = −

∑
e

∫
∂De,N

n ·
[
(Fqe)

∗ − 1

2
Fqe
]
· pe dx +

∫
De,N

ge · pe dx. (4.3)

Next, if ∂De∩∂De′ is a non-empty two-dimensional intersection (∂De∩∂De′ has non-
zero two-dimensional Lebesgue measure) we combine the integrands of the surface
integrals on both “−” and “+” LGL (or LG) points. This is possible due to the
mesh conformity, i.e., the number of LGL (or LG) points on “−” and “+” sides are
the same and they can be reordered to be exactly coincident. After some algebraic
manipulations for the surface integrals on the right side of (4.3), the following holds
for the elastic–acoustic case:∑

e

d

dt
Eed = −1

2

∑
e

∫
∂De,N

k0

{
(n · [[S]])

2
+ ρ−c−p ρ

+c+p [[v]]
2
}

+ k1

{
‖n× (n× [[S]])‖2 + +ρ−c−s ρ

+c+s ‖n× (n× [v])‖2
}
dx+

∫
De,N

ge · pe dx,

where terms involving k1 are zero for a face either on or adjacent to the acoustic side.
Similarly, for the electromagnetic case

∑
e

d

dt
Eed =

∑
e

∫
De,N

ge · pe dx

− 1

2

∫
∂De,N

1

2 {{Z}}
‖n× n× [E]‖2 +

1

2 {{Y }}
‖n× n× [H]‖2 dx,

where terms involving E and H vanish for PMC and PEC boundaries, respectively,
and both vanish for dielectric boundaries.

Now, for g = 0 the overall energy is non-increasing, i.e.,

d

dt
Ed ≤ 0.

For g 6= 0, we obtain the following estimate, by Cauchy-Schwarz and Young inequali-
ties,

d

dt
Ed ≤

∫
DNel

g · p ≤ 1

2

(
Ed + ‖INg‖2DNel ,d

)
.
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5. Mortar-based non-conforming approximations.
In this section, we employ the mortar-based approximation idea proposed by

Kopriva et al. [14, 18]. However, we propose to use a discretized mortar-based ap-
proximation to show stability in addition to the outflow condition and global con-
servation as required by the original mortar method [14, 18]. As will be shown, our
discrete version requires a special quadrature rule in order to simultaneously satisfy
all the requirements. We provide a setting that allows unified proofs that are valid
for both functional (due to order refinement) and geometric (due to local subdivision)
non-conforming approximations.

The following conventions are adopted. We use bold face type to denote vectors
of nodal values of the corresponding quantities under consideration. For example, q
is the vector of nodal values of q. In addition, we use upper case script type to denote
matrices, e.g. P.

We consider non-conforming approximations due to domain subdivision in which
elements may be subdivided locally while their neighbors may not. For simplicity
of exposition, we further restrict ourselves to the case where a subdomain interface
between two adjacent elements (two elements are said to be adjacent to each other if
their boundary intersection has non-zero two-dimensional Lebesgue measure) must be
an entire face of either of them. Nevertheless, adjacent elements are allowed to have
different solution orders, and hence order refinement (i.e., p-refinement) in addition
to domain subdivision (i.e., h-refinement) is permissible. From here on, by “non-
conforming interface” we mean that an entire face of one element is also a union of
faces of other adjacent elements (h-non-conforming), or, the solution orders of two
elements sharing a face are different (p-non-conforming). A non-conforming interface
with one element on one side and seven elements on the other side is shown in Figure
5.1.

a non-conforming interface

Fig. 5.1. A non-conforming interface with one hexahedron on one side and seven hexahedra
on the other side.

Consider a non-conforming interface where on the “−” side is face fe0 of ele-
ment e0 and on the “+” side are faces fei of elements ei, i = 1, . . . , Na. Clearly,
this setting includes both kinds of non-conforming interfaces. We create Na mortars
Mi, i = 1, . . . , Na whose “−” sides are seen by element e0 and “+” sides by elements
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ei, respectively. As in [18], the geometric order on the mortars must be the lowest geo-
metric order of the contributing elements, and the polynomial should be defined along
face fe0 . This will ensure that the mortars match sub-interfaces between elements ex-
actly, and hence the metrics Jeiaei on a mortar and the corresponding contributing
element faces are represented by identical polynomials. The solution orders of the
mortars are chosen as Nmi ≥ max {Ne0 , Nei} which is sufficient to satisfy the outflow
condition, as we shall show. An example with seven mortars corresponding to the
non-conforming interface in Figure 5.1 is shown in Figure 5.2.

seven mortars

M1
M2

M3

M4
M5

M6

M7

+−
Pei→mi

Pmi→ei
Pe0→mi

Pmi→e0

Fig. 5.2. Seven mortars corresponding to the non-conforming interface in Figure 5.1.

The goal of the mortar approximation is to compute the contravariant fluxes on
faces fei , i = 0, . . . , Na. This is a three-step process. First, the states on e0 and ei are
projected on the mortars through L2 projectors Pe0→mi and Pei→mi , i = 1, . . . , Na.
The projected states are then used to compute the mortar contravariant fluxes as if
each mortar is a conforming face. The final step is to project the contravariant fluxes
back on the element faces using projectors Pmi→e0 and Pmi→ei . The illustration
of steps 1 and 3 can be seen in Figure 5.2. The components of each step are now
detailed.

State qm
−
i on the “−” side of mortar Mi is the least squares projection of state

qe0 from element e0 onto space PNmi , i.e.,

∫
Mi

qm
−
i (r) `mik (r) dr =∫

Mi

qe0
(

(Xe0)
−1 ◦Xei (r)

)
`mik (r) dr, ∀`mik (r) ∈ PNmi . (5.1)

Since our main goal is to prove semi-stability, least squares projection of the type
(5.1) is approximated using quadratures. Nevertheless, we do not wish to violate the
outflow condition and global conservation. In fact, the outflow condition is necessary
to ensure stability, as shown in §6. In this paper, the following quadrature rule is used.
For any surface integral in the least squares projection of the type (5.1), the quadrature
rule is chosen to correspond to the integrand with the highest order. For example,
the Nmith-order quadrature rule is used for both integrals in (5.1). Explicitly, we
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approximate (5.1) as∫
Mi,Nmi

qm
−
i (r) `mik (r) dr =∫

Mi,Nmi

qe0
(

(Xe0)
−1 ◦Xei (r)

)
`mik (r) dr, ∀`mik (r) ∈ PNmi , (5.2)

which yields

qm
−
i = (Mmi)

−1 Re0→mi︸ ︷︷ ︸
Pe0→mi

qe0

where the matrices Mmi and Re0→mi are defined as

Mmi
k1,k2

=

∫
Mi,Nmi

`mik1 (r) `mik2 (r) dr,

Re0→mi
k,j =

∫
Mi,Nmi

`mik (r) `e0j

(
(Xe0)

−1 ◦Xei (r)
)
dr, ∀`e0j ∈ PNe0 .

Similarly, the least squares projection of state qei from element ei onto PNmi is state

qm
+
i on the “+” side of mortar Mi. Using the above quadrature rule we have∫
Mi,Nmi

qm
+
i (r) `mik (r) dr =

∫
Mi,Nmi

qei (r) `mik (r) dr, ∀`mik (r) ∈ PNmi , (5.3)

or, equivalently,

qm
+
i = (Mmi)

−1 Rei→mi︸ ︷︷ ︸
Pei→mi

qei (5.4)

with Rei→mi defined as

Rei→mi
k,j =

∫
Mi,Nmi

`mik (r) `eij (r) dr, ∀`eij ∈ PNei .

Since the fluxes depend on λ, µ, ε, and µ, we perform the above least squares projection

procedure on them as well. Based on the projected states qm
−
i , qm

+
i , and projected

coefficients, we compute the contravariant Riemann fluxes F̃∗mi =
(
ñ · F̃ (qmi)

)∗
on

the mortars as if the mortars are conforming faces. This is done using a simple relation
between the contravariant and covariant Riemann fluxes as in [16]. The projected

states are also used to compute the contravariant fluxes F̃−mi = ñ·F̃
(
qm
−
i

)
, and F̃+

mi =

ñ · F̃
(
qm

+
i

)
. The final step is to project the mortar contravariant fluxes F̃∗mi , F̃

−
mi and

F̃+
mi onto PNei , i = 0, . . . , Na. Since the procedure is the same for F̃∗mi , F̃

−
mi and F̃+

mi ,

we describe only the process of projecting F̃∗mi to obtain the contravariant fluxes F̃∗ei
on faces fei of the contributing elements. The discretized least squares projection
using the quadrature rule discussed above for face fe0 is as follows:∫

fe0 ,Ne0

F̃∗e0 (r) `e0j (r) dr =

Na∑
i=1

∫
Mi,Nmi

F̃∗mi (r) `e0j

(
(Xe0)

−1 ◦Xei (r)
)
dr, ∀`e0j ∈ PNe0 , (5.5)
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for which, in matrix notation, the vector of nodal values of F̃∗e0 , F̃∗e0 , is computed as

M e0F̃∗e0 =

Na∑
i=1

Rmi→e0F̃∗mi ,

or in terms of projection matrices,

F̃∗e0 =

Na∑
i=1

(M e0)
−1 Rmi→e0︸ ︷︷ ︸

Pmi→e0

F̃∗mi , (5.6)

where

M e0
k,j =

∫
Mi,Ne0

`e0k (r) `e0j (r) dr, Rmi→e0 = (Re0→mi)
T
. (5.7)

Similarly, the vector of nodal values of F̃−e0 , F̃−e0 is given by

F̃−e0 =

Na∑
i=1

Pmi→e0F̃−mi . (5.8)

The projection to compute contravariant fluxes F̃∗ei on surface fei i = 1, . . . , Na of
other contributing elements is simpler,∫
Mi,Nei

F̃∗ei (r) `eij (r) dr =

∫
Mi,Nmi

F̃∗mi (r) `eij (r) dr = 0, ∀`eij (r) ∈ PNei , (5.9)

which yields

F̃∗ei = (M ei)
−1 Rmi→ei︸ ︷︷ ︸

Pmi→ei

F̃∗mi , (5.10)

where

M ei
k,j =

∫
Mi,Nei

`eik (r) `eij (r) dr, Rmi→ei = (Rei→mi)
T
. (5.11)

Similarly,

F̃+
ei = Pmi→eiF̃+

mi . (5.12)

Recall that the outflow condition means the invariance of a polynomial function
when projected to the mortars and back to the face [14, 18]. We are now in a position
to discuss the outflow condition for the above discrete mortar-based approximation.

proposition 1 (Outflow condition). Assume Nmi ≥ max {Ne0 , Nei}, i = 1, . . . , Na.
Then the discrete mortar-based approximation with LG quadrature satisfies the strong
outflow conditions, namely,

Pmi→eiPei→mi = I, i = 1, . . . , Na, (5.13)

Na∑
i=1

Pmi→e0Pe0→mi = I, (5.14)
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where I is the identity matrix of appropriate size. On the other hand, discretizations
using LGL quadrature satisfy the outflow condition in the following weak sense,∫

Mi,Nmi

qei (r) ˆ̀dr =

∫
Mi,Nei

q̂ei (r) ˆ̀dr, ∀ˆ̀ ∈ PNei , (5.15)

and

Na∑
i=1

∫
Mi,Nmi

qe0
(

(Xe0)
−1 ◦Xei (r)

)
ˆ̀
(

(Xe0)
−1 ◦Xei (r)

)
dr =∫

fe0 ,Ne0

q̂e0 (r) ˆ̀ (r) dr, ∀ˆ̀ ∈ PNe0 , (5.16)

where q̂ei is the result from the projection of qei to Mi and back on fei , and q̂e0 the
result from the projection of qe0 to Mi and back on fe0 .

Proof. We first show (5.13). Denote qm
+
i as the projection of qei on mortar Mi,

using (5.3) and (5.9), we have∫
Mi,Nmi

qm
+
i (r) ` (r) dr =

∫
Mi,Nmi

qei (r) ` (r) dr, ∀` ∈ PNmi ,∫
Mi,Nmi

qm
+
i (r) ˆ̀ (r) dr =

∫
Mi,Nei

q̂ei (r) ˆ̀ (r) dr, ∀ˆ̀ ∈ PNei ⊂ PNmi ,

which imply the weak outflow condition (5.15). This weak outflow condition is valid
for both LGL and LG quadrature rules. For LG quadrature, however, the weak
outflow condition also implies the strong one, namely, q̂ei = qei , and hence (5.13),
since LG quadrature is exact.

For (5.14), denote q̂m
−
i as the projection of qe0 onto mortarsMi. Equations (5.2)

and (5.5) imply, for i = 1, . . . , Na,∫
Mi,Nmi

qm
−
i (r) ` (r) dr =∫

Mi,Nmi

qe0
(

(Xe0)
−1 ◦Xei (r)

)
` (r) dr, ∀` ∈ PNmi , (5.17)

Na∑
j=1

∫
Mj ,Nmj

qm
−
j (r) ˆ̀

(
(Xe0)

−1 ◦Xej (r)
)
dr =∫

fe0 ,Ne0

q̂e0 (r) ˆ̀ (r) dr, ∀ˆ̀ ∈ PNe0 . (5.18)

Since Nmi ≥ max {Ne0 , Nei}, and hence PNe0 ⊂ PNmi , i = 1, . . . , Na, we take ` (r) =

ˆ̀
(

(Xe0)
−1 ◦Xei (r)

)
in (5.17) and sum over i = 1, . . . , Na, and finally subtract from

(5.18) to obtain the weak outflow condition (5.16). Again, by the exactness of LG
quadrature we have q̂e0 = qe0 , and hence (5.14).

remark 1. It is clear that if Nmi = Ne0 = Nei , i.e., only h non-conformity is
considered, the weak outflow conditions are indeed strong.
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proposition 2 (Global conservation). The discrete mortar-based approximation
satisfies the following global conservation,∫

fe0

F̃∗e0 dr =

Na∑
i=1

∫
fei

F̃∗ei dr.

Proof. This result is an easy consequence of (5.5) and (5.9). Indeed, taking
`e0 ≡ 1 in (5.5) and `eij ≡ 1 in (5.9), we have∫

fe0 ,Ne0

F̃∗e0 (r) dr =

Na∑
i=1

∫
Mi,Nmi

F̃∗mi (r) dr,

and

Na∑
i=1

∫
Mi,Nei

F̃∗ei (r) dr =

Na∑
i=1

∫
Mi,Nmi

F̃∗mi (r) dr.

Observe that F̃∗e0 (r) is a polynomial of order at most Ne0 , while F̃∗ei (r) is a polynomial
of order at most Nei . The exactness of either LGL or LG quadrature completes the
proof.

6. Semi-discrete stability for non-conforming meshes. We start this sec-
tion with a discussion on why the outflow condition is necessary for the stability proof
to hold. The semi-discrete form (3.2) is also applied for non-conforming approximation

using the mortar method in §5. However, the contravariant fluxes
(
F̃qe
)∗

and F̃qe on

the boundary ∂D̂ are the projected values of the mortar contravariant fluxes instead

of the trace of the flux, F̃qe
∣∣∣
∂D̂

. Accordingly, using commutativity of quadrature and

integration by parts [24, 17], (3.2) becomes∑
e

∫
D̂,Ne

JeQe ∂q
e

∂t
· pe dr −

∫
D̂,Ne

INe
(
F̃qe
)
· ∇r · pe dr

+

∫
∂D̂,Ne

ñ ·
[(

F̃qe
)∗
− F̃qe + F̃qe

∣∣∣
∂D̂

]
· pe dr =

∑
e

∫
D̂,Ne

Jege · pe dr. (6.1)

conforming approximation, one has F̃qe
∣∣∣
∂D̂
− F̃qe = 0, ∀r ∈ ∂D̂, and this is the

reason why (4.1) holds. This no longer holds for the non-conforming approximation

unless F̃qe = F̃qe
∣∣∣
∂D̂
,∀r ∈ ∂D̂, which is true if the outflow condition is satisfied

and F̃qe ∈ PNe . A sufficient condition for F̃qe ∈ PNe to hold is that the medium
properties, i.e., λ, µ, and ε, are element-wise constant.

We introduce the global interpolation operator Π whose restriction on element
De is

Π|De = INe ,

which allows us to obtain the following stability proof for our non-conforming approx-
imation.

theorem 2 (Stability for non-conforming meshes with LG quadratures). As-
sume



Non-conforming hp Discontinuous Galerkin Spectral Element Method 15

(i) The discrete mortar approach in §5 is used for non-conforming approxima-
tions.

(ii) The mesh is affine.
(iii) The LG quadrature is used, i.e., the strong outflow condition is satisfied.
(iv) λ, µ, and ε, are element-wise constant.

Then the DGSEM discretization is stable in the sense that

d

dt
Ed ≤

1

2

(
Ed + ‖Πg‖2DNel ,d

)
.

Moreover, if g = 0, then d
dtEd ≤ 0.

Proof. As discussed above, assumptions (iii) and (iv) imply the identity F̃qe
∣∣∣
∂D̂
−

F̃qe = 0, ∀r ∈ ∂D̂. Therefore, similar to the proof of Theorem 1, we substitute

p :=

(
S
v

)
:=

(
CE
v

)
for the elastic-acoustic case and p = q for the electromagnetic

case, to obtain∑
e

d

dt
Eed =

∑
e

−
∫
∂D̂,Ne

ñ ·
[(

F̃qe
)∗
− 1

2

(
F̃qe
)]
· pe dr+

∫
D̂,Ne

Jege · pe dr. (6.2)

We divide the surface integrals into two groups, namely, surface integrals associated
with conforming and with non-conforming interfaces. The former group has been
shown to be non-positive as in the proof of Theorem 1. We therefore need to con-
sider only the latter group for which we take a typical non-conforming interface and
its contributing surface integrals as in §5. We shall show that the non-conforming
contribution is also non-positive.

The surface integral contributed from element e0, with the contravariant fluxes
projected from mortars, can be written as

−
∫
fe0 ,N

e0

[
F̃∗e0 −

1
2 F̃
−
e0

]
· pe0 dr

= − (pe0)
T
Me0

[
F̃∗e0 −

1
2 F̃
−
e0

]
using quadrature

= −
∑Na
i=1 (pe0)

T Rmi→e0
[
F̃∗mi −

1
2 F̃
−
mi

]
using (5.6) and (5.8)

= −
∑Na
i=1

(
pm
−
i

)T
Mmi

[
F̃∗mi −

1
2 F̃
−
mi

]
using (5.3) and (5.7)

= −
∑Na
i=1

∫
Mi,Nmi

[
F̃∗mi −

1
2 F̃
−
mi

]
· pm

−
i dr using quadrature

= −
∑Na
i=1

∫
Mi,Nmi

ñ ·
[(

F̃ (qmi)
)∗
− 1

2 F̃
(
qm
−
i

)]
· pm

−
i dr. by definition

For each contributing element ei, i = 1, . . . , Na, the surface integral on face fei ,
with the contravariant fluxes projected from mortars, is

−
∫
fei ,N

ei

[
F̃∗ei −

1
2 F̃
−
ei

]
· pei dr

= − (pei)
T
Mei

[
F̃∗ei −

1
2 F̃
−
ei

]
using quadrature

= − (pei)
T Rmi→ei

[
F̃∗mi −

1
2 F̃

+
mi

]
using (5.10) and (5.12)

= −
(
pm

+
i

)T
Mmi

[
F̃∗mi −

1
2 F̃

+
mi

]
using (5.4) and (5.11)

= −
∫
Mi,Nmi

[
F̃∗mi −

1
2 F̃

+
mi

]
· pm

+
i dr using quadrature

= −
∫
Mi,Nmi

ñ ·
[(

F̃ (qmi)
)∗
− 1

2 F̃
(
qm

+
i

)]
· pm

+
i dr. by definition
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Therefore, we have shown that each non-conforming interface consisting of faces
fei of contributing elements ei, i = 0, . . . , Na, is equivalent to 2Na conforming faces
associated with Na mortarsMj , j = 1, . . . , Na. That is, the surface integrals in (6.2)
in fact consist of conforming interfaces—either the original conforming interfaces or
equivalent conforming mortars. The stability proof of Theorem 1 for conforming faces
can now be applied to complete the proof.

When the strong outflow condition is not satisfied, i.e., when LGL quadrature is
used as in Proposition 1. We have the following stability.

theorem 3 (Stability for non-conforming meshes with LGL quadratures). Sup-
pose all assumptions in Theorem 2 hold except that the LGL quadrature is employed.
Then the DGSEM discretization is stable in the sense that

d

dt
Ed ≤

1

2

(
(1 + 2c) Ed + ‖Πg‖2DNel ,d

)
,

where the small constant c converges to zero if the exact solution q is sufficiently
smooth.

Proof. When the numerical integration is not exact, we have the following extra
term ∑

e

∫
∂D̂,Ne

ñ ·
[
F̃qe
∣∣∣
∂D̂
− F̃qe

]
· pe dr, (6.3)

which can be shown to be small as∑
e

∫
∂D̂,Ne

ñ ·
[
F̃qe
∣∣∣
∂D̂
− F̃qe

]
· pe dr ≤ cEd. (6.4)

We now provide an explicit estimate for the constant c to show that c is indeed
negligible. It is sufficient to estimate the error for contributing element ei whose face
fei is on the “+” side of a mortar. From the weak outflow identity (5.15) and the
triangle inequality, we have∣∣∣∣∣

∫
ei ,Nei

ñ ·
[
F̃qei

∣∣∣
∂D̂
− F̃qei

]
· pei dr

∣∣∣∣∣ ≤∣∣∣∣∣
∫
Mi,Nmi

ñ · F̃qei
∣∣∣
∂D̂
· pei dr −

∫
Mi

ñ · F̃qei
∣∣∣
∂D̂
· pei dr

∣∣∣∣∣
+

∣∣∣∣∣
∫
Mi,Nei

ñ · F̃qei
∣∣∣
∂D̂
· pei dr −

∫
Mi

ñ · F̃qei
∣∣∣
∂D̂
· pei dr

∣∣∣∣∣ .
Note that both terms on the right side of the preceding inequality are of the same
type, namely, the error between LGL quadrature integration and exact integration
for polynomial of order 2Nei . Since Nmi ≥ Nei , we need to estimate only the second
term. Using an error estimate from [1] together with Stirling’s formula we have∣∣∣∣∣

∫
Mi,Nei

ñ · F̃qei
∣∣∣
∂D̂
· pei dr −

∫
Mi

ñ · F̃qei
∣∣∣
∂D̂
· pei dr

∣∣∣∣∣
= O

(
Nei + 1

2Nei + 1

(
Nei − 1

Nei

)4Nei−2 1

22Nei
h
2Nei
e

)
,
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which shows that the error introduced by having the weak outflow condition (instead
of the strong one for which the additional error (6.3) is zero) is decaying exponentially

with respect to the solution order Nei , and at the rate 2Nei , i.e., h
2Nei
e , with respect

to he. Compared to the optimal error rate with respect to he and Nei in (7.1)–(7.2),
the error rate resulting from the weak outflow condition is much smaller.

remark 2. By virtue of both h and p estimates above, we see that even though
the inexactness of the LGL quadrature violates the strong outflow condition and hence
generates additional boundary terms when integration by parts is performed, these
terms are negligible. From now on, if LGL quadrature is used, we implicitly absorb
the additional error terms arising from the weak outflow condition into constant in
the convergence estimate, as in Theorem 4, or simply ignore them.

7. Convergence rate analysis. The previous sections show that our discrete
approximations, both conforming and non-conforming, are stable. Together with con-
sistency, to be shown below, our approximations are convergent by the Lax-Ritchmyer
equivalence theorem. The direct consequence is that the solution can grow at most
exponentially in time, which is typically for Lax-Ritchmyer type of convergence. This
kind of convergence result is interesting for theoretical analysis, but may not be appro-
priate for assessing the actual convergence rate of a numerical method. Fortunately,
Hesthaven and Warburton [12] show that a direct convergence analysis is possible,
allowing a much better upper bound on the error estimate. We adapt this type of
direct convergence analysis to derive a priori error bounds for our non-conforming
approximations.

Recall that interpolation introduces truncation and aliasing errors [7, 16], and
hence interpolation is generally different from projection, which has only truncation
error. For sufficiently smooth functions, however, the aliasing error either is spectrally
small [7, 11, 16] or can be made equal to zero [12]. Following [12], we shall make no
distinction between interpolation and projection in what remains.

The following conventions are used in this section. We reserve q for the unknown
exact solution, INeq for the projection of q on PNe , and qNe the solution of the discrete
form (3.2) restricted on element e. In addition, C denotes a generic constant that may
have different values in different contexts, qd is defined by qd|De = qNe , and finally
a dummy variable q lives in different spaces for different inequalities. To begin, we
recall the following fundamental hp approximation error bounds [2, 3, 4],

‖q − INeq‖Hr(De) ≤ C
hσe−re

Nse−r
e

‖q‖Hse (De) , 0 ≤ r ≤ se (7.1)

‖q − INeq‖∂De ≤ C
h
σe−1/2
e

N
se−1/2
e

‖q‖Hse (De) , se >
1

2
(7.2)

with he = diam (De), σe = min {Ne + 1, se}, and ‖·‖Hr(De) denoting the usual Sobolev
norm.

For approximation using tensor product LGL quadrature, the following equiva-
lence of the discrete and continuous norm, an extension of the one dimensional version
in [11], is useful in passing from the discrete norm to the continuous one and vice versa:
∀q ∈ PN ,

‖q‖D̂ ≤ ‖q‖D̂,N ≤
(

2 +
1

N

)3/2

‖q‖D̂ , and ‖q‖∂D̂ ≤ ‖q‖∂D̂,N ≤
(

2 +
1

N

)
‖q‖∂D̂ .



18 T. Bui-Thanh and O. Ghattas

We first derive the convergence rate for conforming meshes. Since the electro-
magnetic, acoustic, elastic, and coupled acoustic–elastic wave equations are similar,
we analyze the electromagnetic case and leave out details of the others. Denote

T q =
[
TE , TH

]T
as the the truncation error that results from substituting the exact

solution q in the discrete equation (3.2). Using the fact that q satisfies the Maxwell’s
equations, we have(
`k, INeTE

)
De,Ne

= (`k, INe∇× (H − INeH))De,Ne

+

(
`k,

1

2 {{Z}}
n×

(
Z+ [INeH]− n× [INeE]

))
∂De,Ne

, ∀`k ∈ PNe(
`k, INeTH

)
De,Ne

= (`k, INe∇× (E − INeE))De,Ne

+

(
`k,

1

2 {{Y }}
n×

(
Y + [INeE] + n× [INeH]

))
∂De,Ne

, ∀`k ∈ PNe

where, to the end of this section, µ and ε are assumed to be element-wise constant,
and the mesh is affine. Note that since the truncation errors for the electric and
magnetic equations are similar, we need to estimate only the former and infer the
later. Since INeTE ∈ PNe , we can take `k = INeTE and use the Cauchy–Schwarz
inequality together with the equivalence of discrete and continuous norms to obtain∥∥INeTE

∥∥2
De,Ne

≤ 272 ‖INe∇× (H − INeH)‖De
∥∥INeTE

∥∥
De

+ 92
∥∥∥∥ 1

2 {{Z}}
n×

(
Z+ [INeH]− n× [INeE]

)∥∥∥∥
∂De

∥∥INeTE
∥∥
∂De

.

Now using the following inverse trace inequality [23], ∀q ∈ PNe ,

‖q‖∂De ≤ C
Ne

h
1/2
e

‖q‖De (7.3)

yields ∥∥INeTE
∥∥
De,Ne

≤ C ‖INe∇× (H − INeH)‖De

+ C
Ne

h
1/2
e

∥∥∥∥ 1

2 {{Z}}
(
Z+ [INeHτ ]− [INeEτ ]

)∥∥∥∥
∂De

, (7.4)

where we have introduced the tangent components of E and H as

Eτ = n× (n×E) , Hτ = n×H.

We now have the following consistency result.
lemma 1 (Consistency). Suppose that each component qei ∈ Hse (De) , se ≥ 3/2,

for i = 1, . . . , d, with d = 6 for electromagnetic case and d = 12 for elastic–acoustic
case. Furthermore, assume that µ and ε (λ and µ for elastic–acoustic case) are
element-wise constant, and the mesh is affine. There exists a constant C dependent
on s, angle condition of De, and local values of µ and ε (λ and µ for elastic–acoustic
case), but independent of q, he, and Ne such that

‖INeT q‖DNel ,d ≤ C
∑
e

hσe−1e

N
se−3/2
e

‖q‖[Hse (De)]d .
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Proof. Since the proofs for electromagnetic and elastic–acoustic cases are similar,
we provide only the proof for the former. We begin by estimating the bound for the
first term on the right side of (7.4). Using approximation result (7.1) we have

‖INe∇× (H − INeH)‖De ≤ ‖∇× (H − INeH)‖De ≤ C
hσe−1e

Nse−1
e

‖H‖[Hse (De)]3 .

To estimate the second term we use the regularity of the exact solution, i.e., the
tangent component of the field is continuous, and the triangle inequality to bound
‖[INeHτ ]‖∂De , and hence similarly for ‖[INeEτ ]‖∂De , as

‖[INeHτ ]‖∂De ≤
∥∥H−τ − INeH−τ ∥∥∂De +

∥∥H+
τ − INeH

+
τ

∥∥
∂De

Two terms of the right side of the preceding inequality are of the same type, and there-
fore we need to estimate only the bound for the first term. But this is straightforward
using (7.2), i.e.,

∥∥H−τ − INeH−τ ∥∥∂De ≤ C h
σe−1/2
e

N
se−1/2
e

‖Hτ‖[Hse (De)]3 ≤ C
h
σe−1/2
e

N
se−1/2
e

‖H‖[Hse (De)]3 .

Now combining the above estimates for both terms on the right side of (7.4), summing
over all elements, and using the discrete Hölder inequality completes the proof.

remark 3. Note that the proof of Lemma 1 is carried out for conforming meshes.
However, by the proof of Theorem 2, the surface integrals in (6.2) in fact consist of
conforming interfaces—either the original conforming interfaces or equivalent con-
forming mortars. Hence, the proof for non-conforming meshes is almost identical
except for bounding the boundary terms which are now defined on the mortars instead
of on the contributing element faces. But the fields on the mortars are the L2 orthog-
onal projections of those on the contributing element faces, which implies L2 norms
of fields on mortars to be at most those on contributing element faces. This shows
that the proof for conforming meshes is sufficient.

We now state the first convergence result.

theorem 4. Assume qe ∈ [Hse (De)]d , se ≥ 3/2 with d = 6 for electromagnetic
case and d = 12 for elastic–acoustic case. In addition, suppose qd(0) = Πq(0). Fur-
thermore, assume that µ and ε (λ and µ for elastic–acoustic case) are element-wise
constant, and the mesh is affine. Then, the solution qd of the discrete form (3.2)
converges to the exact solution q, i.e., there exists a constant C that depends only
on the angle condition of De, s, and the material constants µ and ε (λ and µ for
elastic–acoustic case) such that

‖q (t)− qd (t)‖DNel ,d ≤ C
∑
e

[
hσee
Nse
e
‖q (t)‖[Hse (De)]d + t

hσe−1e

N
se−3/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d

]
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Proof. We begin the proof with the following identities

(
INeE −ENe , INeTE

)
De,Ne

=

(
INeE −ENe , ε

∂ (INeE −ENe)

∂t

)
De,Ne

− (INeE −ENe , INe∇× (INeH −HNe))De,Ne

+

(
INeE −ENe ,

1

2 {{Z}}
n×

(
Z+ [INeH −HNe ]− n× [INeE −ENe ]

))
∂De,Ne

,

(
INeH −HNe , INeTH

)
De,Ne

=

(
INeH −HNe , µ

∂ (INeH −HNe)

∂t

)
De,Ne

+ (INeH −HNe , INe∇× (INeE −ENe))De,Ne

−
(
INeH −HNe ,

1

2 {{Y }}
n×

(
Y + [INeE −ENe ] + n× [INeH −HNe ]

))
∂De,Ne

,

where we have substituted the exact solution into the discrete equation (3.2), and
used INeE −ENe and INeH −HNe as test functions for the electric and magnetic
equations, respectively.

Following the proof of Theorem 2, we integrate the preceding equations by parts,
sum up the resulting equations, cancel the volume terms involving the fluxes, and use
the non-positiveness of the boundary integrals to arrive at

d

dt
‖Πq− qd‖2DNel ,d ≤ C

∑
e

(INeq− qNe, INeT q)De,Ne ,

where we have used the fact that the material constants µ and ε are bounded away
from zero. Next, we use Cauchy-Schwarz and then the discrete Hölder inequalities,
then apply the consistency result of Lemma 1 to obtain

d

dt
‖Πq− qd‖DNel ,d ≤ C

∑
e

hσe−1e

N
se−3/2
e

‖q‖[Hse (De)]d ≤ C
∑
e

hσe−1e

N
se−3/2
e

max
[0,t]
‖q‖[Hse (De)]d ,

which, after integrating in time, yields

‖Πq (t)− qd (t)‖DNel ,d ≤ Ct
∑
e

hσe−1e

N
se−3/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d ,

where we have used qd(0) = Πq(0). Now, using the triangle inequality we have,

‖q (t)− qd (t)‖DNel ,d ≤ ‖q (t)−Πq (t)‖DNel ,d + ‖Πq (t)− qd (t)‖DNel ,d .

Finally, using the equivalence of the discrete and continuous norms and (7.1) ends the
proof.

remark 4. Since all norms are equivalent in finite dimensional spaces, the result
of Theorem 4 holds for other norms as well, with possibly different constant C. In
particular, we have

∑
e

‖q (t)− qd (t)‖De,Ne ≤ C
∑
e

[
hσee
Nse
e
‖q (t)‖[Hse (De)]d + t

hσe−1e

N
se−3/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d

]
.
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remark 5. We again emphasize that the LGL quadrature introduces additional
error terms when the discrete integration by parts is performed. However, they are
shown to be negligible in Theorem 3 and Remark 2, so their absence in the proof of
Theorem 4 is justified. The proof for the LG quadrature follows exactly the same line
and hence is omitted here. The only difference is that all the numerical integrations
are exact, and therefore there is no need to invoke the equivalence of discrete and
continuous norms.

The proof of Theorem 4 is simple since it directly uses the consistency and stability
results. Nevertheless, the rate is suboptimal in h by a factor of 1/2 and in N by 1
compared to the DG literature. This loss is incurred when estimating the truncation
error and using the inverse trace inequality (7.3). This begs for a more sophisticated
proof that does not lead to a deterioration of the optimal convergence rate. Inspired
by the work of Warburton [26], we present a proof that improves the convergence rate
in h by a factor of 1/2 and in N by 1. We start by rewriting (3.2), after integrating
by parts, for an affine mesh and element-wise constant materials as

∑
e

∫
De

∂qNe
∂t
· pe dx−

∫
De

FqNe · (∇x · pe) dx

+

∫
∂De

ñ ·
[
(FqNe)

∗] · pe dx =
∑
e

∫
De

ge · pe dx+Re, ∀p ∈ Vd, (7.5)

where, by the proof of Theorem 3, Re = o
(
hσee
Nsee

)
and Re = 0 for LGL and LG

quadratures, respectively. Since the exact solution q also satisfies (7.5) with Re = 0,
we obtain

∑
e

∫
De

∂ (q− qNe)

∂t
· pe dx−

∫
De

F (q− qNe) · (∇x · pe) dx

+

∫
∂De

ñ · (F (q− qNe))
∗ · pe dx = −

∑
e

Re, ∀p ∈ Vd. (7.6)

Next, adding and subtracting the elemental projection of the exact solution, i.e., INeq,
yield,

∑
e

∫
De

∂ (INeq− qNe)

∂t
· pe dx−

∫
De

F (INeq− qNe) · (∇x · pe) dx

+

∫
∂De

ñ · (F (INeq− qNe))
∗ · pe dx

= −
∑
e

∫
∂De

ñ · (F (q− INeq))
∗ · pe dx−Re, ∀p ∈ Vd, (7.7)

where we have used the linearity of F and the following orthogonal identity,∫
De

(q− INeq) · pe dx = 0, pe ∈ L2 (De)d .

Now, integrating (7.7) by parts, testing the resulting equation and (7.7) with pe =
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INeq− qNe , and then adding them yield,

d

dt
‖Πq− qd‖2DNel ,d +

∑
e

1

2

∫
∂De

ñ · (F (q− INeq))
∗ · [INeq− qNe ] dx+Re

= −
∑
e

∫
∂De

ñ ·
[
(F (INeq− qNe))

∗ − 1

2
F (INeq− qNe)

]
· (INeq− qNe) dx︸ ︷︷ ︸

Ke

. (7.8)

On the other hand, if ρ, λ, µ and ε are bounded, the proof of Theorems 1 and 2 implies

Ke ≥ αe ‖[INeq− qNe ]‖
2
[L2(∂De)]d , (7.9)

for some αe > 0.
We are now in the position to prove the following convergence result.
theorem 5. Assume qe ∈ [Hse (De)]d , se ≥ 3/2 with d = 6 for electromagnetic

case and d = 12 for elastic–acoustic case. In addition, suppose qd(0) = Πq(0). Fur-
thermore, assume that µ and ε (λ and µ for elastic–acoustic case) are element-wise
constant, and the mesh is affine. Then, the solution qd of the discrete form (3.2)
converges to the exact solution q, i.e., there exists a constant C that depends only
on the angle condition of De, s, and the material constants µ and ε (λ and µ for
elastic–acoustic case) such that

‖q (t)− qd (t)‖DNel ,d ≤ C
∑
e

[
hσee
Nse
e
‖q (t)‖[Hse (De)]d + t

h
σe−1/2
e

N
se−1/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d

]

Proof. Using the Young inequality for some βe > 0 we have,

∑
e

∫
∂De

∣∣ñ · (F (q− INeq))
∗ · [INeq− qNe ]

∣∣ dx ≤∑
e

βe ‖q− INeq‖
2
[L2(∂De)]d

+
∑
e

1

βe
‖[INeq− qNe ]‖

2
[L2(∂De)]d , (7.10)

where we have used the linearity of F∗. Combining (7.8), (7.9), and (7.10) yields

d

dt
‖Πq− qd‖2DNel ,d +

∑
e

(
α− 1

βe

)
‖[INeq− qNe ]‖

2
[L2(∂De)]d

≤
∑
e

βe ‖q− INeq‖
2
[L2(∂De)]d + |Re| . (7.11)

Next, taking βe ≥ 1
αe and using (7.2) give

d

dt
‖Πq− qd‖2DNel ,d ≤ C

∑
e

h2σe−1e

N2se−1
e

max
[0,t]
‖q‖2[Hse (De)]d .

The rest of the proof follows similarly to that of Theorem 4.
We have restricted ourselves to the case of affine hexahedral meshes and element-

wise constant medium properties. This allows us to eliminate the volume integrals
of fluxes on the right side of equation (4.1) since differentiation and interpolation
commute. The discrete stability is then apparent due to the non-positiveness of the
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surface integrals of fluxes. Most of the results still hold for meshes with Jai =
constant, for i = 1, 2, 3. In addition, it is not difficult to see that the stability, and
hence convergence, results for both conforming and non-conforming approximations
are still valid for meshes with curved elements, provided that the contravariant fluxes
are polynomials with order at most Ne, i.e.,

F̃i = Jeai · F ∈ PNe , i = 1, 2, 3, (7.12)

for which we again have the commutativity of differentiation and interpolation. To-
gether with the metric identities in [15], we again can eliminate the volume integrals
after integrating by parts. Moreover, it is clear that our results remain true for other
types of meshes, e.g., affine tetrahedral meshes as well, as long as the discrete integra-
tion by parts is possible and the commutativity of differentiation and interpolation is
valid. For general curvilinear hexahedral meshes, it is not clear whether the volume
integrals vanish (or become negative) or not since differentiation and interpolation
generally do not commute (even over-integration is not helpful in this case).

8. Conclusions. We have presented an analysis of a non-conforming hp discon-
tinuous Galerkin spectral element method for time domain solution of wave propaga-
tion problems in acoustic, elastic, coupled elastic–acoustic, and electromagnetic me-
dia. We have proven consistency, stability, and convergence under the usual assump-
tions, i.e., affine meshes and element-wise constant medium properties. Our analytical
results hold for both exact numerical integration using tensor product Legendre-Gauss
quadrature and inexact numerical integration using tensor product Legendre-Gauss-
Lobatto quadrature. The key ingredient of our proposed approach is the development
of a discrete mortar-based approach for non-conforming approximations. With this
mortar construction, we have shown that the proofs for non-conforming cases closely
follow those for conforming ones, and the resulting convergence retains the same op-
timal rate as for standard DG methods. Numerical experiments in [27] for acoustic,
elastic, and coupled acoustic-elastic wave propagation on h-non-conforming meshes
confirm the theoretical rates presented here, and a further companion paper numeri-
cally demonstrates optimal convergence for electromagnetic wave propagation [6].
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